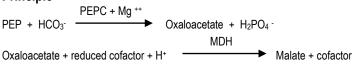


Intended Use


For the quantitative determination of Carbon Dioxide in serum using the Mindray BS-480 analyzer. For in vitro diagnostic use only.

Method History

Early methods for the determination of carbon dioxide were based on either volumetric or manometric determination of the CO₂ released from a sample by acid treatment. These methods used the instruments of Van Slyke ^{1,2} until they were replaced by the Natelson microgasometer,³ which still uses manometric determination of total CO₂.

Methods have been developed for Auto Analyzers⁴ but these suffer from baseline drift⁵ and require equipment which many laboratories do not have. Enzymatic methods for CO₂ have been introduced by Wilson,⁶ Menson⁷ and Norris⁸ using phosphoenolpyruvate carboxylase. The present procedure is a enzymatic assay utilizing Phosphoenolpyruvate Carboxylase (PEPC) and a NADH analog.

Principle

Carbon Dioxide (in the form of bicarbonate ions) reacts with phosphoenolpy-

ruvate (PEP), in the presence of phosphoenolpyruvate carboxylase (PEPC), to form oxaloacetate. The cofactor then in the presence of malate dehydrogenase (MDH) is oxidized by the oxaloacetate. The decrease in absorbance monitored between 405 and 415 nm resulting is proportional to the amount of CO₂ in the sample.

Clinical Significance⁵

The measurement of Carbon Dioxide is useful in the assessment of acid-base balance disturbances. Elevated CO₂ is observed in metabolic alkalosis and compensated respiratory acidosis. Low CO₂ is observed in compensated respiratory alkalosis and metabolic acidosis. Differentiation between the metabolic and respiratory conditions is only possible through additional laboratory determinations.

Reagents

CO₂ reagent: PEP 6mM, Magnesium Ions 10mM, NADH analog, MDH (porcine) \geq 1200U/L, PEPC (microbial) \geq 200U/L, Buffer, pH 7.4 \pm 0.1 non-reactive stabilizers with surfactants and preservative.

Reagent Preparation

Reagent provided as a ready to use liquid.

Reagent Storage and Stability

Reagent is stable until expiration date indicated on vial label when stored tightly capped at 2-8°C. (15 months from date of manufacture). Manufacturer studies have shown reagent is stable for 30 days once placed in the refrigerated reagent carousel (2-10°C), however reagent stability may vary based on individual laboratory conditions.

Reagent Deterioration

- 1. Reagent should appear clear and pale yellow in color.
- 2. Do not use if reagent appears to be turbid, this would indicate deterioration.

Precautions and Hazards

- 1. Reagents are for in vitro diagnostic use only.
- 2. Do not ingest. Toxicity has not been established.
- 3. Do not pipet by mouth to avoid CO₂ contamination from the expired air.

Hazards:

Hazard Classifications: Not a hazardous substance or mixture.

<u>Pictogram:</u> Not required. Signal Word: Not required.

Hazard Statements: Not a hazardous substance or mixture.

Precautionary Statements: Not a hazardous substance or mixture

Refer to the Safety Data Sheet for this product (SDS-CO2600) available at www.medtestdx.com.

Specimen Collection and Storage

- 1. Fresh, unhemolyzed serum collected under anaerobic conditions is the recommended specimen.
- 2. The sample may be stored in ice water under anaerobic conditions for up to one hour.9

Interferences

- Interferences were evaluated for this carbon dioxide method on a Mindray BS-480 analyzer. No interference was observed by bilirubin up to 20.0 mg/dl, hemoglobin up to 219.9 mg/dl and lipemia (intralipid) up to 1000 mg/dl. (Using a criteria of >10% variance from control. CO₂ level was 26, 23, 25 mmol/L respectively)
- 2. CO₂ from air or the breath of the analyst is a major interference in this assay. Reagent handling, specimen collection, and all storage instructions must be strictly followed to minimize this interference.
- 3. A number of conditions and substances have been reported to affect serum Carbon Dioxide levels. 10,11,12

Materials Provided

Carbon Dioxide Reagent

Materials Required but not Provided

- 1. Mindray BS-480 Analyzer
- 2. BS-480 Operation manual
- 3. Chemistry Calibrator, catalog number CHEC480
- 4. Chemistry control, catalog number CHEQ480

Limitations

- 1. Samples exceeding 40 mmol/L must be diluted 1:1 with saline, re-assayed, and the result multiplied by two.
- 2. Carbon Dioxide contamination must be avoided. Keep reagent tightly capped when not in use.

Calibration

Use an NIST-traceable serum calibrator. The procedure should be calibrated according to the instrument manufacturer's calibration instructions. If control results are found to be out of range, the test may need to be re-calibrated. Under typical operating conditions manufacturer calibration stability studies have shown the calibration curve will be stable for at least 1 day.

Quality Control

To monitor the reliability of results, two levels of control sera with known Carbon Dioxide values should be run with patient samples. Quality control requirements should be performed in conformance with local, state, and/or Federal regulations or accreditation requirements.

Expected Values 9

23-34 mmol/L

It is strongly recommended that each laboratory determine its own reference range.

Performance

- Assay Range: 2 40 mmol/L
- Comparison: A study was performed between the Mindray BS-480 and a similar analyzer using this method, resulting in the following:

Method	Carbon Dioxide
N	97
Mean CO2 (mmol/L)	22.5
Range (mmol/L)	4-39
Standard Deviation	6.4
Regression Analysis	y = 0.962x - 2.2
Correlation Coefficient	0.9543

Precision: Within Day precision was investigated by running two samples in replicates of 20 on the same day. Day to Day results were obtained by performing
one run per day over a span of 20 days. Precision studies were performed using the Mindray BS-480 analyzer following a modification of the guidelines which
are contained in NCCLS document EP5-T2.¹³

Within Day							
Sample	LOW	MID	HIGH				
N	20	20	20				
Mean	7.8	23.9	30.9				
Standard Deviation	0.4	0.5	0.6				
Coefficient of Variation (%)	5.7%	2.1%	2.0%				

	TOlai		
Sample	LOW	MID	HIGH
N	40	40	40
Mean	10.0	22.6	29.4
Standard Deviation	1.1	2.0	1.0
Coefficient of Variation (%)	10.5%	8.7%	3.3%

4. Sensitivity: 2SD limit of detection (95% Conf) = 1 mmol/L

References

- 1. Van Slyke, D.D. and Stadie, W.C., J. Biol. Chem. 49:1 (1921).
- 2. Van Slyke, D.D. and Neil, J.M., J. Biol. Chem. 61:523 (1924).
- 3. Natelson, S., Microtechniques of Clinical Chemistry, C. Thomas, Springfield, IL. P.147 (1961).
- Skeggs, L.T. Jr., Am. J. Clin. Path. 33:181 (1960).
- 5. Tietz, N.W., Fundamentals of Clinical Chemistry, W.B. Saunders, Philadelphia, PA., pp 884-887 (1982).
- 6. Wilson, W., et al, Clin. Chem. 19:640 (1973).
- 7. Menson, R.C., et al, Clin. Chem. 20:872 (1974).
- 8. Norris, K.A., et al, Clin. Chem. 21:1093 (1975).
- 9. Henry, R.J., Clinical Chemistry: Principles and Technics, Harper & Row, New York, NY, p784 (1974).
- 10. Young, D.S., et al, Clin. Chem. 21:1D (1975).
- 11. Martin, E.W., In Hazard of Medication (Alexander, S.F., Farage, D.J., and Hassan, W.E., Jr. eds.), J.B. Lippincott Co., Philadelphia, PA., and Toronto, Canada, p. 169 (1971).
- 12. Constantino, N.V., and Kabat, H.F., Am. J. Hosp. Pharm. 30:24 (1973).
- 13. NCCLS document "Evaluation of Precision Performance of Clinical Chemistry Devices", 2nd Ed. (1992)

CHEMISTRY PARAMETERS

Chem:	CO2			No.:	208	Sample Type:	Serum
Chemistry:	Carbon Dioxide					Print Name:	CO2
Reaction Type:	Fixed Time					Reaction Direction:	Negative
Pri Wave:	412					Sec Wave:	505
Unit:	mmol/L					Decimal	0
Blank Time:	10 12					Reaction Time:	18 41
Sar	mple Vol.	Aspirated	Diluer	nt		Reagent Vol.	Diluent
Standard: 1.	5 ul	ul		ul		R1: 150 ul	ul
Decreased: -	ul	ul		ul		R2: ul	ul
Increased: -	ul	ul		ul		R3: ul	ul
	Sample Blank	☑ Auto Rerun				R4: ul	ul
Slope/Offset Adjustment							
Slope: 1 Offset: 0							

Linearity Range (Standard)	2	40			Linearity Limit:		
Linearity Range (Decreased)				Substrate Depletion:			
Linearity Range (Increased)					Mixed Blank Abs:		
R1 Blank Abs:					Uncapping Time		
Blank Response:					Reagent Alarm Limit:		
Twin Chemistry:					☐ Enzyme Linear Extension		
☐ Prozone Check			○ Rate Check		Antigen Addition		
Q1:		Q2:		Q3:	Q4:		
PC:		ABS:					

CALIBRATION PARAMETERS

Calibrator Definition	on								
Calibrato	r: *	* Lot No.: *							
Exp Date	: *								
Carousel	Pos								
Sample Carousel 1	*								
Sample Carousel 2									
Sample Carousel 3									
Reagent/Calibration	<u>n</u>								
<u>Calibrator</u>	<u>Pos</u>	Lot No	Exp Date	<u>Chem</u>	<u>Conc</u>	<u>Unit</u>			
Water	W	*	*	CO2	0	mmol/L			
Chemistry Calibrato	r *	*	*	CO2	*	mmol/L			
Calibration Setup Chem: Calibration Settings	CO2								
Math Model:	Two-Point Linear								
Factor:		Replicates:	2						
Acceptance Limits									
Cal Time:	*	Hour							
Slope Diff:		SD:							
Sensitivity:		Repeatability:							
Deter Coeff:									
<u>Auto Calib.</u>									
☐ Bottle Changed	□ Lot C	hanged	☐ Cal Time						
It is recommended that two levels of control material be assayed daily.									

* Indicates user defined parameter.

Manufactured for MedTest DX
5449 Research Drive Canton, MI 48188

Symbol Key

Use by (YYYY-MM-DD)
Lot and batch code
Temperature limitation

Manufactured for MedTest DX
5449 Research Drive Canton, MI 48188

Por Lot and batch code
REF Catalog number
IVD In vitro diagnostic medical device